首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   27篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2005年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   5篇
  1982年   3篇
  1979年   5篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
41.
Summary A mutation causing an alteration in Bacillus subtilis ribosomal protein S4 was mapped by transformation and PBS-1 transduction to a site between aroG and argA, a region of the B. subtilis chromosome not previously demonstrated to contain ribosomal protein genes. The S4 mutation conferred a spore-plus phenotype in a streptomycinresistant, spore-minus genetic background. The altered protein was detectable by polyacrylamide gel electrophoresis of ribosomal proteins of recombinants scored for the sporeplus phenotype in genetic crosses.  相似文献   
42.
43.
Chambliss KL  Shaul PW 《Steroids》2002,67(6):413-419
Estrogen has important atheroprotective and vasoactive properties related to its capacity to stimulate nitric oxide (NO) production by endothelial NO synthase. Previous work has shown that these effects are mediated by estrogen receptor (ER) alpha functioning in a nongenomic manner via calcium-dependent, MAP kinase-dependent mechanisms. Recent studies have demonstrated that estradiol (E(2)) activates eNOS in isolated endothelial plasma membranes in the absence of added calcium, calmodulin or eNOS cofactors. Studies of blockade by ICI 182,780 and by ER alpha antibody, and also immunoidentification experiments indicate that the process is mediated by a subpopulation of plasma membrane-associated ER alpha. Fractionation of endothelial cell plasma membranes has further revealed that ER alpha protein is localized to caveolae, and that E(2) causes stimulation of eNOS in isolated caveolae which is ER-dependent and calcium-dependent, whereas noncaveolae membranes are insensitive. Furthermore, in intact endothelial cells the activation of eNOS by E(2) is prevented by pertussis toxin, and exogenous GDP beta S inhibits the response in isolated plasma membranes. Coimmunoprecipitation studies have shown that E(2) exposure causes interaction between ER alpha and G(alpha i) on the plasma membrane, and eNOS activation by E(2) is enhanced by overexpression of G(alpha i) and attenuated by expression of a protein regulator of G protein signaling (RGS), RGS4. Thus, a subpopulation of ER alpha is localized to caveolae in endothelial cells, where they are coupled via G(alpha i) to eNOS in a functional signaling module. Emphasizing the dependence on cell surface-associated receptors, these observations provide evidence for the existence of a steroid receptor fast-action complex, or SRFC, in caveolae.  相似文献   
44.
A variety of degradation products are produced upon pretreatment of lignocellulosic biomass with dilute acid. To date, the complexity of these samples has significantly limited the scope of efforts to perform summative analyses of degradation products. Qualitative and quantitative interrogation of hydrolysates is also paramount to identifying potential correlations between pretreatment chemistry and microbial inhibition in downstream bioconversion processes. A recently developed reversed-phase high performance liquid chromatography technique with UV detection has been applied to perform quantitative assessments of a variety of hydrolysate components as a function of pretreatment time and temperature. Correlations of product concentrations to the pretreatment severity function indicate differing responses of various compounds to the kinetic influences of temperature and reaction time. Of the compounds measured, four demonstrated initial accumulation rates were sufficiently linear over the time period tested to enable determination of activation energy E(a). All four compounds appear to demonstrate higher E(a) than that assumed in the commonly applied severity function. Overall accumulation trends for most compounds indicated similar under-estimation of apparent activation energy by the severity function. Biotechnol. Bioeng. 2007;98: 1135-1145. (c) 2007 Wiley Periodicals, Inc.  相似文献   
45.
Estrogen induces G protein-dependent nongenomic signaling in a variety of cell types via the activation of a plasma membrane-associated subpopulation of estrogen receptor alpha (ER alpha). Using pull-down experiments with purified recombinant proteins, we now demonstrate that ER alpha binds directly to G alpha i and G betagamma. Mutagenesis and the addition of blocking peptide reveals that this occurs via amino acids 251-260 and 271-595 of ER alpha, respectively. Studies of ER alpha complexed with heterotrimeric G proteins further show that estradiol causes the release of both G alpha i and G betagamma without stimulating GTP binding to G alpha i. Moreover, in COS-7 cells, the disruption of ER alpha-G alpha i interaction by deletion mutagenesis of ER alpha or expression of blocking peptide, as well as G betagamma sequestration with beta-adrenergic receptor kinase C terminus, prevents nongenomic responses to estradiol including src and erk activation. In endothelial cells, the disruption of ER alpha-G alpha i interaction prevents estradiol-induced nitric oxide synthase activation and the resulting attenuation of monocyte adhesion that contributes to estrogen-related cardiovascular protection. Thus, through direct interactions, ER alpha mediates a novel mechanism of G protein activation that provides greater diversity of function of both the steroid hormone receptor and G proteins.  相似文献   
46.
CcpA was purified from Escherichia coli BL21 (lambda DE3)/pLysS carrying plasmid pTSC5, which was constructed by inserting the ccpA gene into the polycloning site of pGEM4. The purified protein migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent mass of 38 kDa but was eluted from a calibrated Bio-Gel P-100 column with an apparent mass of 75 kDa. Western blot (immunoblot) analysis revealed the presence of CcpA in E. coli BL21 (lambda DE3)/pLysS/pTSC5, which carries ccpA, and in wild-type Bacillus subtilis 168 but not in E. coli BL21 (lambda DE3)/pLysS/pGEM4 or in B. subtilis WLN-29, in which ccpA is inactivated by transposon Tn917 insertion. Purified CcpA bound to DNA containing amyO and retarded its mobility in electrophoretic mobility shift analysis. Complete retardation of the DNA required 75 ng of CcpA per assay. In DNase protection analysis, CcpA bound to DNA containing amyO and protected a region spanning amyO when either DNA strand was labeled. Mutant forms of amyO not effective in catabolite repression were not retarded by CcpA.  相似文献   
47.
48.
Purpose: To determine the level of anti‐fat bias in health professionals specializing in obesity and identify personal characteristics that correlate with both implicit and explicit bias. Research Methods and Procedures: The Implicit Associations Test (IAT) and a self‐report questionnaire assessing explicit attitudes, personal experiences with obesity, and demographic characteristics was administered to clinicians and researchers attending the opening session of an international obesity conference (N = 389). The IAT was used to assess overall implicit weight bias (associating “obese people” and “thin people” with “good” vs. “bad”) and three ranges of stereotypes: lazy‐motivated, smart‐stupid, and valuable‐worthless. The questionnaire assessed explicit bias on the same dimensions, along with personal and professional experiences with obesity. Results: Health professionals exhibited a significant pro‐thin, anti‐fat implicit bias on the IAT. In addition, the subjects significantly endorsed the implicit stereotypes of lazy, stupid, and worthless using the IAT. Level of bias was associated with several personal characteristics. Characteristics significantly predictive of lower levels of implicit anti‐fat bias include being male, older, having a positive emotional outlook on life, weighing more, having friends who are obese, and indicating an understanding of the experience of obesity. Discussion: Even professionals whose careers emphasize research or the clinical management of obesity show very strong weight bias, indicating pervasive and powerful stigma. Understanding the extent of anti‐fat bias and the personal characteristics associated with it will aid in developing intervention strategies to ameliorate these damaging attitudes.  相似文献   
49.
50.
Estrogen causes rapid endothelial nitric oxide (NO) production because of the activation of plasma membrane-associated estrogen receptors (ER) coupled to endothelial NO synthase (eNOS). In the present study, we determined the role of G proteins in eNOS activation by estrogen. Estradiol-17beta (E(2), 10(-8) m) and acetylcholine (10(-5) m) caused comparable increases in NOS activity (15 min) in intact endothelial cells that were fully blocked by pertussis toxin (Ptox). In addition, exogenous guanosine 5'-O-(2- thiodiphosphate) inhibited E(2)-mediated eNOS stimulation in isolated endothelial plasma membranes, and Ptox prevented enzyme activation by E(2) in COS-7 cells expressing ERalpha and eNOS. Coimmunoprecipitation studies of plasma membranes from COS-7 cells transfected with ERalpha and specific Galpha proteins demonstrated E(2)-stimulated interaction between ERalpha and Galpha(i) but not between ERalpha and either Galpha(q) or Galpha(s); the observed ERalpha-Galpha(i) interaction was blocked by the ER antagonist ICI 182,780 and by Ptox. E(2)-stimulated ERalpha-Galpha(i) interaction was also demonstrable in endothelial cell plasma membranes. Cotransfection of Galpha(i) into COS-7 cells expressing ERalpha and eNOS yielded a 3-fold increase in E(2)-mediated eNOS stimulation, whereas cotransfection with a protein regulator of G protein signaling, RGS4, inhibited the E(2) response. These findings indicate that eNOS stimulation by E(2) requires plasma membrane ERalpha coupling to Galpha(i) and that activated Galpha(i) mediates the requisite downstream signaling events. Thus, novel G protein coupling enables a subpopulation of ERalpha to initiate signal transduction at the cell surface. Similar mechanisms may underly the nongenomic actions of other steroid hormones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号